EMC Receiver Concepts

Bill Wangard EMI Receiver Product Management

March 2018

ROHDE&SCHWARZ

Questions for Audience

I What Standards work with?

- I Aerospace & Defense
 - I MIL-STD461? DO-160? AIAA? Others?
- I Commercial
 - I CISPR? FCC? Others?

I EMC SW automation vs front panel operation?

I What SW automation? Tile! ? EMC32? Others?

I What types of Signals are in products tested?

- I High power?
- I Continuous vs time varying spectrum?
- I Repetitive pulsed vs Intermittent?
- I Minimum duration pulse to characterize? Measurements Accurate?

Questions for Audience

I Use spectrum analyzers or EMI receivers?

- I Know the difference?
- I Need for pre-selection? Familiarity of pre-selection?

Use Time Domain Scan (now in MIL-STD461G)?

I Familiar with benefits of Time Domain Scan?

I Familiar with Real-time Spectrum Analysis?

- I Persistency Display?
- I Spectrogram displays?
 - I Real-time spectrogram vs non real-time?

Agenda

What does Compliance Mean? CISPR 16-1-1

- Spectrum Analyzers vs EMC Receivers
 - I Purpose / Application
 - Architecture
- I The Value of Pre-Selection
- I Time Domain Scan
 - I Ability to Capture Intermittent Signals
 - I Speed
 - I Measurement Time (Dwell Time) / PRI (Pulse Repetition Rate)
- AGC: Automatic Gain (of Level) Control
- I User Interface
- I Real-time Spectrum Analysis

What is Compliance?

- CISPR 16-1-1 is the standard which puts specifications on the 'measuring apparatus'
 - Be it spectrum analyzer, EMI test receiver, FFT analyzer
 - Black box' approach
- MIL-STD461 indirectly references CISPR 16-1-1 requirements via ANSI C63.2
 - Therefore, even the MIL-STD community is governed by requirements in CISPR16-1-1
- CISPR 16-1-1 has requirements on the ability of the 'measuring apparatus' to properly measure pulses
- I The pulse handling requirements translate into dynamic range and pre-selection architectural requirements of the 'measuring apparatus'

What is Compliance? MIL-STD461 references ANSI C63.2

ROH

MIL-STD-461G

IEEE/ASTM INTERNATIONAL

IEEE/ASTM SI 10 American National Standard for Metric Practice

(IEEE and ASTM International publish this standard jointly. Copies are available from http://www.astm.org/.)

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)/IEEE									
l	ANSI C63.2	magnetic Noise and Field GHz Specifications							
	ANSI C63.14	American National Standard Dictionary of Electromagnetic Compatibility (EMC) including Electromagnetic Environmental Effects (E3)							
HDE	&SCHWARZ	March 2018 - EMC Receiver Concepts							

What is Compliance? ANSI C63.2 references CISPR16-1-1

American National Standard for Electromagnetic Noise and Field Strength Instrumentation, 10 Hz to 40 GHz Specifications

1. Normative references

The following referenced documents are indispensable for the application of this standard. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments or corrigenda) applies.

CISPR 16-1-1, Specification for Radio Disturbance and Immunity Measuring Apparatus and Methods— Part 1-1: Radio Disturbance and Immunity Measuring Apparatus—Measuring Apparatus.¹

INTRODUCTION

The CISPR 16 series, published under the general title *Specification for radio disturbance and immunity measuring apparatus and methods,* is comprised of the following sets of standards and reports:

- CISPR 16-1 five parts covering measurement instrumentation specifications;
- CISPR 16-2 five parts covering methods of measurement;
- CISPR 16-3 a single publication containing various technical reports (TRs) with further information and background on CISPR and radio disturbances in general;
- CISPR 16-4 five parts covering uncertainties, statistics and limit modelling.

CISPR 16-1 consists of the following parts, under the general title Specification for radio disturbance and immunity measuring apparatus and methods – Radio disturbance and immunity measuring apparatus:

- Part 1-1: Measuring apparatus
- Part 1-2: Ancillary equipment Conducted disturbances
- Part 1-3: Ancillary equipment Disturbance power
- Part 1-4: Ancillary equipment Radiated disturbances
- Part 1-5: Antenna calibration test sites for 30 MHz to 1 000 MHz
 - **I** Family of CISPR product standards all reference CISPR 16-1-1
 - MIL-STD461 indirectly references CISPR 16-1-1

ROHI

Section $6 \rightarrow$ Average Detector Section $7 \rightarrow$ rms-average detector - 2 - CISPR 16-1-1:2010 +AMD1:2010+AMD2:2014 © IEC 2014

CONTENTS

FOF	REWORD	6
ΙΝΤΙ	RODUCTION	8
ΙΝΤΙ	RODUCTION to Amendment 1	9
1	Scope	10
	Normative references	
~		

Quasi-peak measuring receivers for the frequency range 9 kHz to 1 000 MHz

		4.2 Input impedance			14
5	Meas	uring receivers with peak detector for the frequency range 9 kHz to 18 GHz	24		14 14
	5.1	General	24		14
	5.2	Input impedance	24	on)	15 19
	5.3	Fundamental characteristics	25		19
	5.3.1	Bandwidth	25		20 20
	5.3.2	Charge and discharge time constants ratio	25		21
	5.3.3	Overload factor	26	ious signals	22
	5.4	Sine-wave voltage accuracy.	26		23
	5.5	Response to pulses	26		23
	5.6	Selectivity	26		
	5.7	Intermodulation effects, receiver noise, and screening	27	asuring receiver nalyzer	
DE&S	CHWA	RZ March 2018 - EMC Receiver Concepts			

4

5.5 Response to pulses

Up to 1 000 MHz, the response of the measuring receiver to pulses with impulse area 1,4/ B_{imp} mVs (where B_{imp} is in Hz) e.m.f. at 50 Ω source impedance shall be equal to the response to an unmodulated sine-wave signal at the tuned frequency having an e.m.f. with rms value of 2 mV [66 dB(μ V)]. The source impedances of both the pulse generator and the signal generator shall be the same. The pulses shall have a uniform spectrum according to Table 2. A tolerance of ±1.5 dB is permitted in the sine-wave voltage level, and this is a requirement for all pulse repetition frequencies for which no overlapping pulses occur at the output of the IF amplifier.

NOTE 1 Annexes B and C describe methods for determining the output characteristics of pulse generators for use in testing for the requirements of this subclause.

NOTE 2 At a repetition rate of 25 Hz for Band A and 100 Hz for the other bands, the relationship between the indications of a peak measuring receiver and a quasi-peak measuring receiver with the preferred bandwidth are given in Table 7.

 Table 7 – Relative pulse response of peak and quasi-peak measuring receivers for the same bandwidth (frequency range 9 kHz to 1 000 MHz)

y A _{imp} B _{imp} R			
m∨s	Hz	25 Hz	100 Hz
6,67 × 10 ⁻³	$0,21 \times 10^{3}$	6,1	-
$0,148 \times 10^{-3}$	$9,45 \times 10^3$	-	6,6
0,011 × 10 ⁻³	$126,0 \times 10^{3}$	-	12,0
	m√s 6,67 × 10 ⁻³ 0,148 × 10 ⁻³	mVs Hz 6,67 × 10 ⁻³ 0,21 × 10 ³ 0,148 × 10 ⁻³ 9,45 × 10 ³	m∨s Hz 25 Hz 6,67 × 10 ⁻³ 0,21 × 10 ³ 6,1 0,148 × 10 ⁻³ 9,45 × 10 ³ -

NOTE The pulse response is based on the use of the reference bandwidth only (see Table 6).

Above 1 GHz, the required impulse area is defined using a pulse-modulated carrier at the frequency of test, since pulse generators with a uniform spectrum up to 18 GHz are not feasible. See E.6.

Table 2 – Pulse response of quasi-peak measuring receivers

Repetition	Relative equivalent level in dB of pulse for stated band						
frequency Hz	Band A 9 kHz to 150 kHz	Band B 0,15 MHz to 30 MHz	Band C 30 MHz to 300 MHz	Band D 300 MHz to 1 000 MHz			
1 000	Note 4	-4,5 ± 1,0	$-8,0 \pm 1,0$	-8,0 ± 1,0			
100	-4,0 ± 1,0	0 (ref.)	0 (ref.)	0 (ref.)			
60	-3,0 ± 1,0	-	-	-			
25	0 (ref.)	-	_	-			
20	-	+6,5 ± 1,0	+9,0 ± 1,0	+9,0 ± 1,0			
10	+4,0 ± 1,0	+10,0 ± 1,5	+14,0 ± 1,5	+14,0 ± 1,5			
5	+7,5 ± 1,5	-	-	-			
2	+13,0 ± 2,0	+20,5 ± 2,0	+26,0 ± 2,0	+26,0 ± 2,0*			
1	+17,0 ± 2,0	+22,5 ± 2,0	+28,5 ± 2,0	+28,5 ± 2,0*			
Isolated pulse	+19,0 ± 2,0	+23,5 ± 2,0	+31,5 ± 2,0	+31,5 ± 2,0*			

* These values are optional and not essential.

NOTE 1 The influence of the receiver characteristics upon its pulse response is considered in Annex D.

NOTE 2 The relationships between the pulse responses of a quasi-peak receiver and receivers with other detector types are given in 5.5, 6.5 and 7.5.

NOTE 3 The theoretical pulse response curves of quasi-peak and average detector receivers combined on an absolute scale are shown in Figure 1d. The ordinate of Figure 1d shows the open-circuit impulse areas in dB(μ Vs) corresponding to the open-circuit sine-wave voltage of 66 dB(μ V) rms. The indication on a measuring receiver with an input matched to the calibrating generators will then be 60 dB(μ V). Where the measuring bandwidth is less than the pulse repetition frequency, the curves of Figure 1d are valid when the receiver is tuned to a discrete line of the spectrum.

NOTE 4 It is not possible to specify a response above 100 Hz in the frequency range 9 kHz to 150 kHz because of the overlapping of pulses in the IF amplifier.

NOTE 5 Annex A deals with the determination of the curve of response to repeated pulses.

What is Compliance? CISPR 16-1-1 CISPR 16-1-1:2010

+AMD1:2010+AMD2:2014 © IEC 2014

The response curve for a particular measuring receiver shall lie between the limits defined in the appropriate figure and quantified in Table 2. For spectrum analyzers without preselection, the requirements in Table 2 for pulse repetition frequencies less than 20 Hz are not applicable. The use of such instruments for compliance testing is conditional. If such spectrum analyzers are used for measurements, the user shall verify and document that the equipment under test does not emit broadband signals of pulse repetition frequencies of 20 Hz or lower. A determination of the suitability of a spectrum analyzer for testing shall be made by performing the procedure documented in Annex B of CISPR 16-2-1, Annex B of CISPR 16-2-2, or Annex B of CISPR 16-2-3.

- 19 -

The pulse response is restricted due to overload at the input to the receiver at frequencies above 300 MHz. The values marked with an asterisk (*) in Table 2 are optional and are not essential.

ROHDE&SCHWARZ

What is Compliance	?
CISPR 16-2-1	CISPR 16-2-1 © IEC:2008 - 57 -
	Annex B (informative)
	Use of spectrum analyzers and scanning receivers (see Clause 6)
	B.1 Introduction
	When using spectrum analyzers and scanning measuring sets, the following characteristics should be taken into account.
	B.2 Overload
	Most spectrum analyzers have no RF preselection in the frequency range up to 2 000 MHz; that is, the input signal is directly fed to a broadband mixer. To avoid overload, to prevent damage and to operate a spectrum analyzer linearly, the signal amplitude at the mixer should typically be less than 150 mV peak. RF attenuation or <u>additional RF preselection may be</u> required to reduce the input signal to this level.
ROHDE&SCHWARZ	March 2018 - EMC Receiver Concepts

CISPR 16-2-2 © IEC:2010

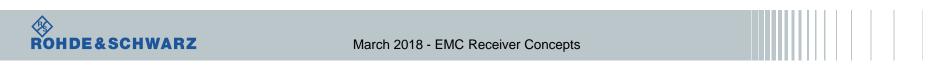
What is Compliance? CISPR 16-2-1 / 16-2-2 / 16-2-3

CISPR 16-2-1/3 all have sections on measurement times and method for automated measurements

Table 1 - Minimum measurement times for the four CISPR bands

- 16 -

F	requency band	Minimum measurement time T _m
Α	9 kHz to 150 kHz	10,00 ms
В	0,15 MHz to 30 MHz	0,50 ms
C and D	30 MHz to 1 000 MHz	0,06 ms
E	1 GHz to 18 GHz	0,01 ms


Table 2 – Minimum scan times for the three CISPR bands with peak and quasi-peak detectors

F	Frequency band Scan time T ₈ for peak detection		Scan time <i>I</i> [®] for quasi-peak detection	
Α	9 kHz to 150 kHz	14,1 s	2 820 s = 47 min	
В	0,15 MHz to 30 MHz	2,985 s	5 970 s = 99,5 min = 1 h 39 min	
C and D	30 MHz to 1 000 MHz	0,97 s	19 400 s = 323,3 min = 5 h 23 min	

Depending on the type of disturbance, the scan time may have to be increased, even for quasi-peak measurements. In extreme cases, the measurement time T_m at a certain frequency may have to be increased to 15 s, if the level of the observed emission is not steady (see 6.5.1). However isolated clicks are excluded.

Scan rates and measurement times for use with the average detector are provided in Annex C.

Most product standards call out quasi-peak detection for compliance measurements that is very time consuming if no time-saving procedures are applied (see Clause 8). Before time-saving procedures can be applied, the emission has to be detected in a prescan. In order to ensure that e.g. intermittent signals are not overlooked during an automatic scan, the considerations in 6.6.3 to 6.6.5 shall be taken into account.

What is Compliance? CISPR 16-2-1 / 16-2-2 / 16-2-3

CISPR 16-2-1/3 all have sections on measurement times and method for automated measurements

8.2 Generic measurement procedure

Signals need to be intercepted by the EMI receiver before they can be maximized and measured. The use of the quasi-peak detector during the emission maximization process for all frequencies in the spectrum of interest leads to excessive test times (see 6.6.2). Time-consuming processes like absorbing clamp position scans are not required for each emission frequency. They should be limited to frequencies at which the measured peak amplitude of the emission is above or near the emission limit. Therefore, only the emissions at critical frequencies whose amplitudes are close to or exceed the limit will be maximized and measured.

Signal detection (Prescan)

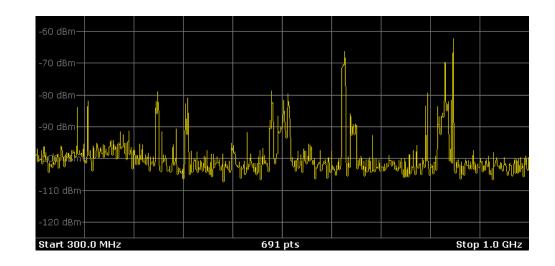
The generic process shown in Figure 10 will yield a reduction in measurement time:

8.7 Emission measurement strategies with FFT-based measuring instruments

Depending on the implementation, FFT-based measuring instruments may perform weighted measurements significantly faster than the tuneable selective voltmeters. A weighted measurement over the frequency range of interest may then be faster than a measurement consisting of a prescan and final scan performed with a superheterodyne receiver, as described in 8.3.

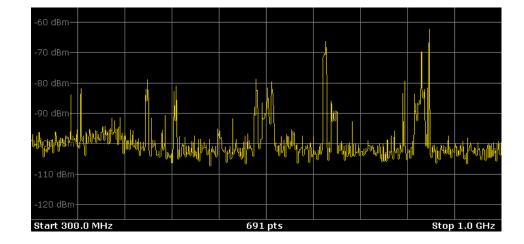
IEC 1839/10

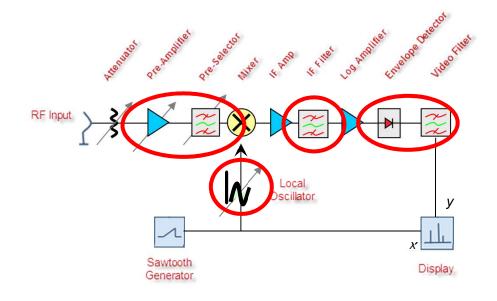
Figure 10 – Process for reduction in measurement time


Agenda

- What does Compliance Mean?
 - I CISPR 16-1-1
- Spectrum Analyzers vs EMC Receivers
 - I Purpose / Application
 - I Architecture
- I The Value of Pre-Selection
- I Time Domain Scan
 - I Ability to Capture Intermittent Signals
 - I Speed
 - I Measurement Time (Dwell Time) / PRI (Pulse Repetition Rate)
- AGC: Automatic Gain (of Level) Control
- I User Interface
- I Real-time Spectrum Analysis

Spectrum/Signal Analyzer Architecture Typical Measurement


- Frequency measurement
 - I Absolute and relative
- Power Level
- Channel Power
 - I Total power in a given bandwidth
- Adjacent channel power
- Spectral purity of RF signals
 - Spurious, harmonics, Intermodulation products, etc.
- Modulation analysis
 - I Analog signals (AM, FM, and PM)
 - I Digital signals (QPSK, BPSK, QAM, etc.)
- Phase noise and noise figure


Spectrum/Signal Analyzer Architecture Typical EMC Related Measurement

- Frequency measurement
 - I Absolute and relative
- Power Level
- Channel Power
 - I Total power in a given bandwidth
- Adjacent channel power
- Spectral purity of RF signals
 - Spurious, harmonics, Intermodulation products, etc.
- Modulation analysis
 - I Analog signals (AM, FM, and PM)
 - I Digital signals (QPSK, BPSK, QAM, etc.)
- Phase noise and noise figure

Spectrum Analyzer vs. EMI Receiver



Pre-amp & Pre-selection

- AGC: automatic gain control
- Local OscillatorSwept vs Stepped
- Detector
- IF Filter

Typically Modern EMI Receiver Design

Wideband IF into ADC and digital signal processing provide for a entire new level of feature / functionality including:

Time Domain Scan

- Real-Time Processing
- Revolutionary New Displays

Agenda

- I What does Compliance Mean?
 - I CISPR 16-1-1
- I Spectrum Analyzers vs EMC Receivers
 - I Purpose / Application
 - Architecture

I The Value of Pre-Selection

- I Time Domain Scan
 - I Ability to Capture Intermittent Signals
 - I Speed
 - I Measurement Time (Dwell Time) / PRI (Pulse Repetition Rate)
- AGC: Automatic Gain (of Level) Control
- I User Interface
- I Real-time Spectrum Analysis

Outline

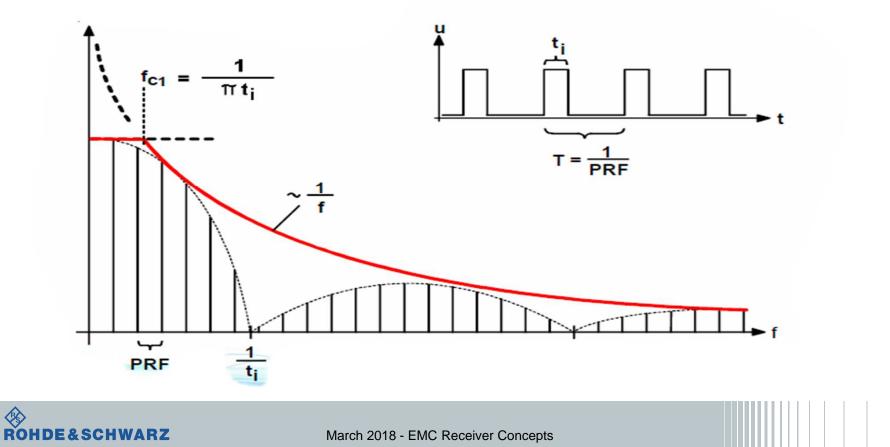
- I Video demonstrating effects of pre-selection
- I Spectrum Analyzer vs EMI Test Receiver
- I Pre-selection in the standards
 - MIL-STD461 & CISPR 16-1-1
 - Time & Frequency Characteristics of Pulses
 - Pulse Requirements in CISPR 16-1-1
- I Pre-selection in a Spectrum Analyzer
 - Image Rejection
- I Pre-selection in an EMI Receiver
 - Overload protection
 - Ability to properly measure pulses
- I Video demonstrating the effects of pre-selection

Video Demonstrating Effects of Pre-selection

400MHz -1GHz Sweep with RBW = 120kHz

Receiver Spectrum	n 🦉 🗵			•••• •	In-/Output
● Att 15 dB ● S SGL	● RBW (E WT10s VBW	MI) 120 kHz 1 MHz	Mode Auto Swe	ep Input 1 AC	Input AC DC
o 1Pk Clrw		r i -			Input
65 dBuV					
					Preselector On Off
60 dBµV					
55 dBµV					LISN Control
50 dBµV					Noise Source
45 dBµV					On Off Video
40 dBµV					Output Off IF VID
35 dBµV					Tracking Generator
30 dBµV					Probe Config
25 dBµV	Mathanandata	harder for the first for the f	Multiply readinghal	und the production of the second	Signal Source
Start 400.0 MHz		pts	Ŷ	Stop 1.0 GHz	RE
			Ready		26.01.2016 02:31:56

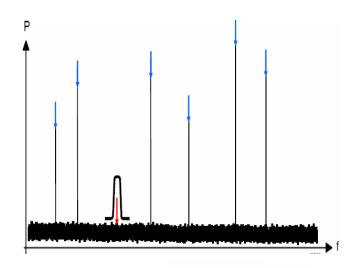
CISPR- Standard Calibration Pulse Generator IGLK 2914 Schwarzbeck MESS-ELETRONIK

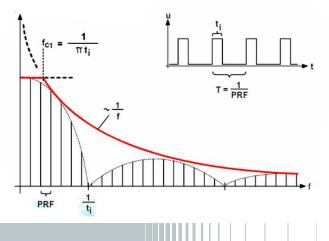

Parametrics

- Pulse type = CISPR 1 (9 kHz)
- Pulse Width ~ 41 ns
- ∎ PRF= 200 Hz
- Power = 56 dBuV

ROHDE&SCHWARZ

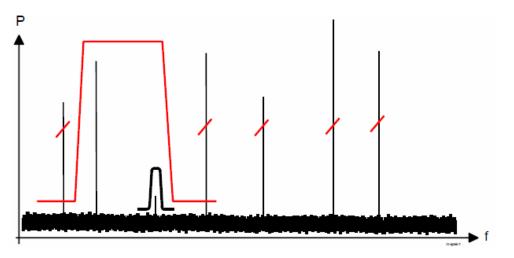
Time & Frequency Domain Characteristics of a Pulse

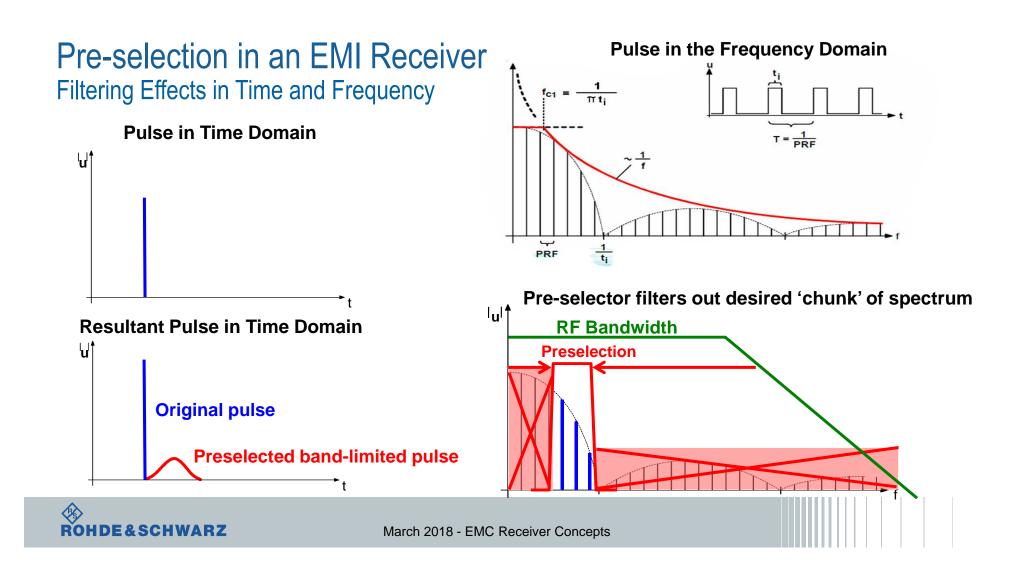


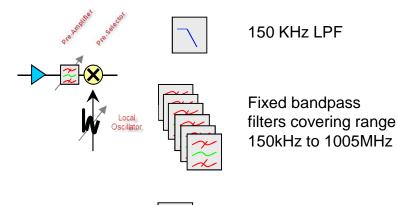

I Purpose of pre-selection

- I NOT image rejection or improved harmonic performance
- I Pre-selection protects the front end mixer
- I Helps eliminate mixer compression and overload

I Two main situations where pre-selection is required


- Spectral content at frequencies other than the desired measurement frequency is overloading the mixer resulting in reduced dynamic range
- 2) Single short duration pulse input resulting in very wide bandwidth spectral content at the mixer




- Every signal hits the mixer
 If compressed → wrong results
- Pre-selection protects the front end mixerHelps eliminate compression

Bank of filers switched in automatically

Preselection and preamplifier Bracelostic

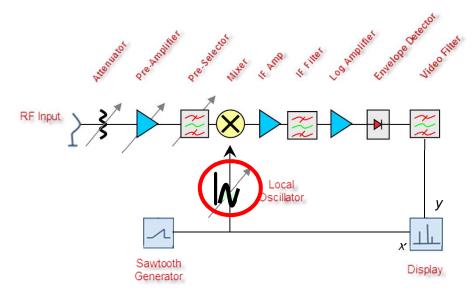
	Preselection					
150 KHz LPF	State	receiver mode	always on			
		analyzer mode	on/off (selectable)			
	Number of preselection filters		16			
	Bandwidths (-6 dB), nominal	10 Hz to 150 kHz	fixed lowpass filter			
		150 kHz to 30 MHz	35 MHz, fixed bandpass filter			
		30 MHz to 80 MHz	94 MHz, fixed bandpass filter			
Fixed bondpage		80 MHz to 130 MHz	94 MHz, fixed bandpass filter			
Fixed bandpass		130 MHz to 180 MHz	91 MHz, fixed bandpass filter			
filters covering range		180 MHz to 230 MHz	105 MHz, fixed bandpass filter			
5 5		230 MHz to 300 MHz	110 MHz, fixed bandpass filter			
150kHz to 1005MHz		300 MHz to 425 MHz	195 MHz, fixed bandpass filter			
		425 MHz to 570 MHz	200 MHz, fixed bandpass filter			
		570 MHz to 715 MHz	210 MHz, fixed bandpass filter			
		715 MHz to 860 MHz	200 MHz, fixed bandpass filter			
		860 MHz to 1005 MHz	200 MHz, fixed bandpass filter			
		1005 MHz to 1750 MHz	fixed highpass filter			
Fixed highpass filters		1750 MHz to 2850 MHz	fixed highpass filter			
		2850 MHz to 4850 MHz	fixed highpass filter			
covering range		4850 MHz to 7000 MHz	fixed highpass filter			
5 5		7 GHz to 26.5 GHz	YIG filter			
1005MHz to 7000MHz	Preamplifier	switchable				
	Location	1 kHz to 7 GHz	in the signal path between preselection			
			and 1st mixer			
		7 GHz to 26.5 GHz	in the signal path between diplexer and			
			preselection			
	Range		1 kHz to 26.5 GHz			
> 7 GHz YIG filter	Gain	1 kHz to 7 GHz	20 dB (nom.)			
		7 GHz to 26.5 GHz	30 dB (nom.)			

ROHDE&SCHWARZ

Pre-Selection Demo

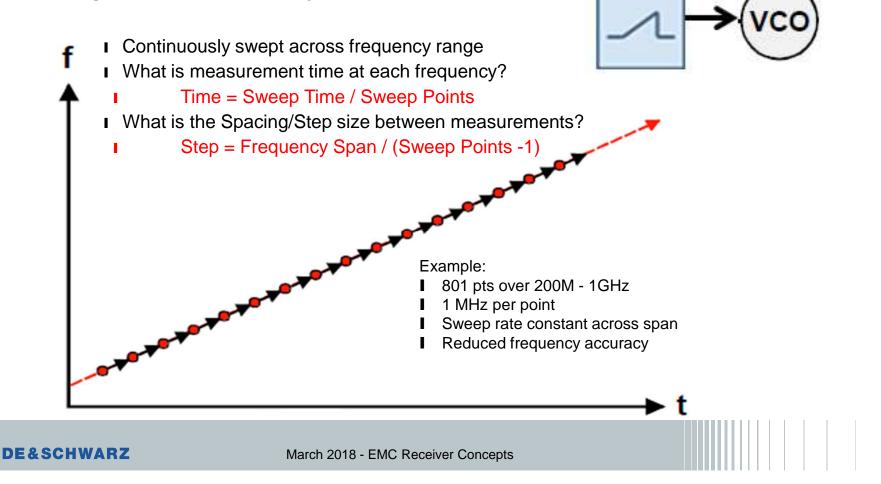
Agenda

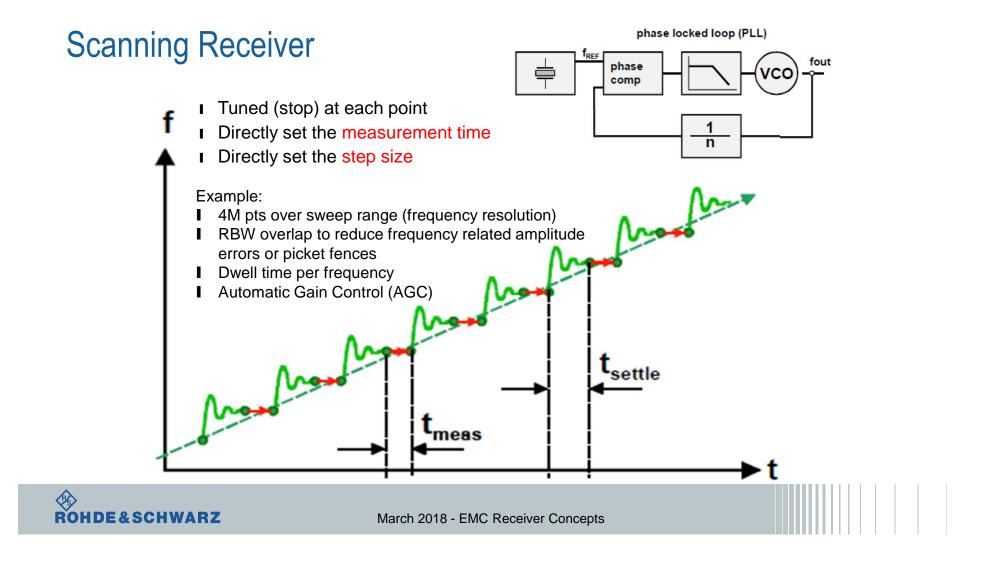
- I What does Compliance Mean?
 - I CISPR 16-1-1
- Spectrum Analyzers vs EMC Receivers
 - I Purpose / Application
 - Architecture
- I The Value of Pre-Selection


I Time Domain Scan

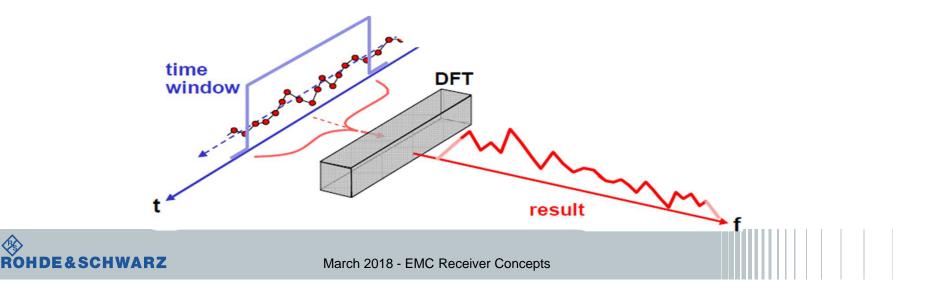
- I Ability to Capture Intermittent Signals
- I Speed
- I Measurement Time (Dwell Time) / PRI (Pulse Repetition Rate)
- AGC: Automatic Gain (of Level) Control
- I User Interface
- I Real-time Spectrum Analysis

LO - Sweeping vs. Scanning


- I Controls the measurement frequency
- I Spend enough time at each frequency to detect pulsed emissions

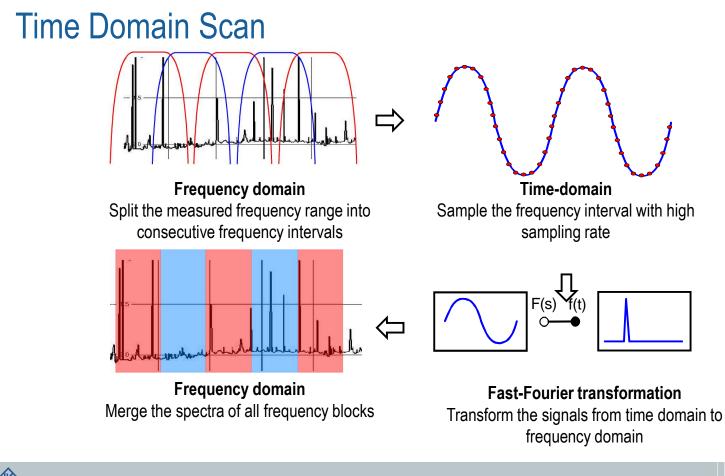


Sweeping Spectrum Analyzer


ROH

Time Domain Scan

- I The Discrete Fourier Transform (DFT) is a numerical mathematical method that calculates the spectrum for a periodic signal
- Use DFT to simultaneously measure many frequencies in parallel
- I The Fast Fourier Transform (FFT) is an efficient algorithm to compute the DFT using symmetry and repetition properties
- FFT is much faster than DFT due to reduced number of multiplications



Speed Improvement of FFT Scan

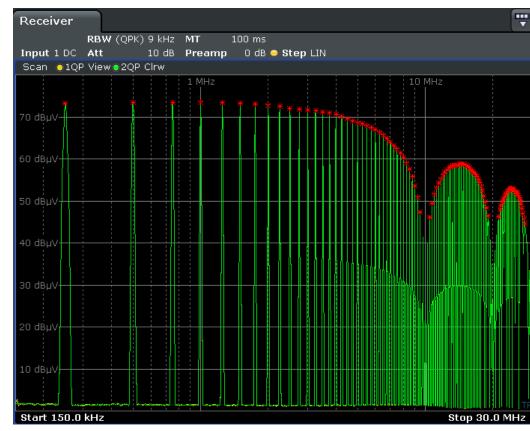
Freq Range	Weighting Detector	Meas/Dwell Time	Meas BW	# Points Freq Stepped	# Points Time Domain	Time (sec) Freq Stepped	Time (sec) Time Domain	Speed Factor Increase	Time Savings (minutes)
CISPR Band B 150K - 30MHz	Pk	100ms	9kHz	9950	13267	995	0.11	9045	17
CISPR Band B 150K - 30MHz	QP	1sec	9kHz	7463	9950	7463	2	3731	124
CISPR Band C/D 30M - 1000MHz	Pk	10ms	120kHz	24250	32333	243	0.52	466	4
CISPR Band C/D 30M - 1000MHz	Pk	10ms	9kHz	323333	431111	3233	0.82	3943	54
CISPR Band C/D 30M - 1000MHz	QP	1sec	120kHz	24250	32333	24250	80	303	403

- I # Points Frequency Stepped \rightarrow Freq Step of Meas BW / 3
 - Step 3.0kHz for 9KHz Meas BW
- $\blacksquare \text{ # Points Time Domain} \rightarrow \text{Freq Bin of Meas BW / 4}$
 - Freq Bin of 2.25kHz for 9kHz Meas BW
- Time (sec) of Time Domain is taken from R&S ESR

ROHDE&SCHWARZ

Level Accuracy

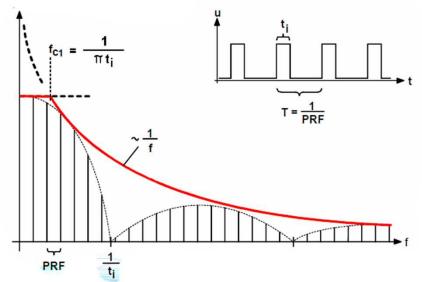
Time Domain Scan versus Stepped Scan


Pulse Input

■ 4.00 µs Pulse Period

- 0.10 µs Pulse Width
- Detector Quasi Peak

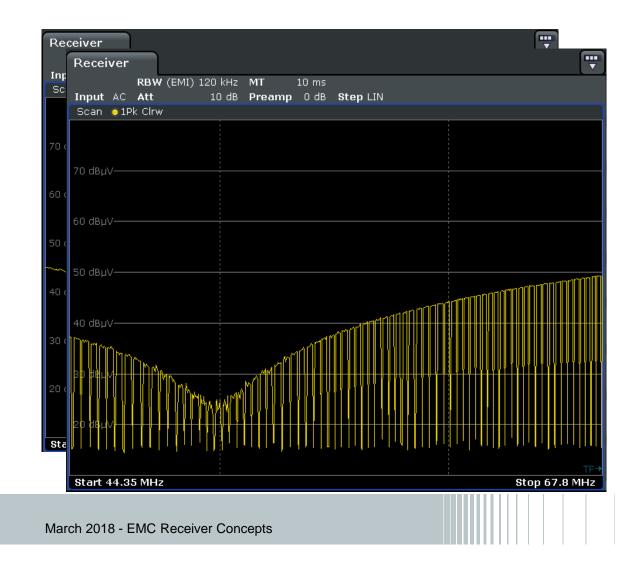
I Yellow Trace


- I Time-Domain
- I Green Trace
 - Freq Stepped

Anatomy of a Pulse Pulsed Emissions

- Minimum dwell time at each frequency in order to catch a pulse
 - I Related to pulse repetition rate
 - I If pulse occurs once every 10 ms...
 - I Then
 - We must dwell for
 - I 10 ms at each
 - I frequency

Measurement Time Frequency Stepped


Input Signal

- Pulse Modulated
- 12 ms pulse period

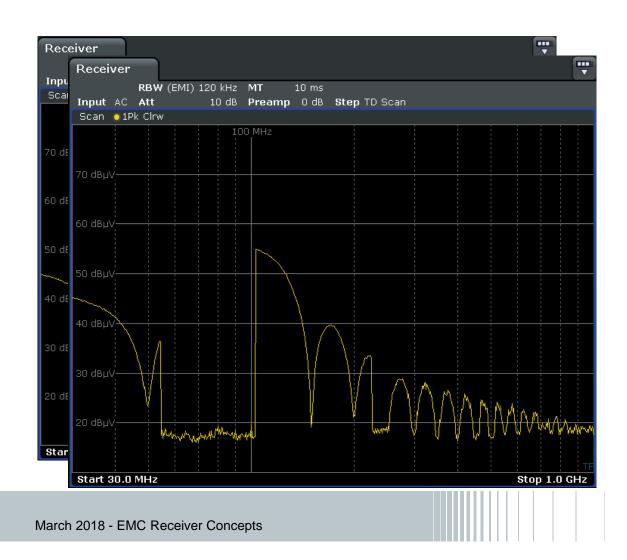
Even 10 ms measurement time yields a closed trace

Zooming in reveals gaps in the trace

ROHDE&SCHWARZ

Measurement Time

Input Signal


- Pulse Modulated
- 12 ms pulse period

Closed trace with 12 ms measurement time

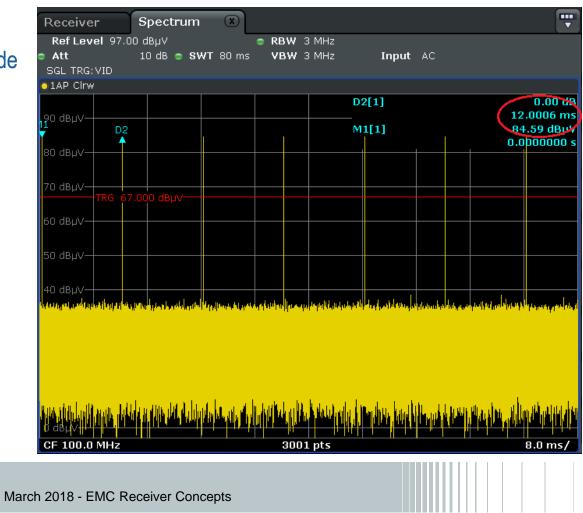
Gaps in trace with 10 ms measurement time

Important: Measurement time ≥ signal period

ROHDE&SCHWARZ

Measurement Time

Spectrum Analyzer Zero Span Mode

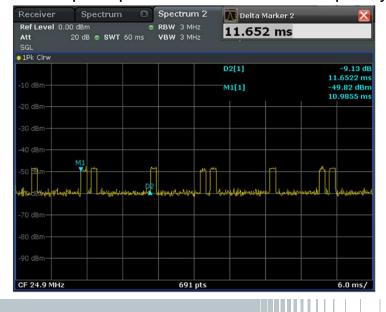

Input Signal

ROHDE&SCHWARZ

Pulse Modulated

12 ms pulse period

Zero span display in spectrum analyzer measures signal period


Zero span display in spectrum analyzer measures signal period / pulse repetition rate

90 dBµV	02				(1) (1)		12.00	.00 dB 06 ms 0 dBuy
	A				41		0.000	0000 s
70 dBµV	67.000 dBµ	v						
+0 dвµV								
termater tert		stalling the Page Hereits	ter transferitor (n	ու <mark>ս տերել է հ</mark> անգաներին։	halo allana anton	and a state of the	International Property in	an palata

ROHDE&SCHWARZ

Wouldn't it be great if you had the ability to see multiple sources of emissions on the same frequency at the same time?

Zero span works when there is a single frequency emission, but what about cases with multiple frequency emissions? Or multiple repetition rates on same frequency?

Comparison Videos

I	Videos 1-5:	Video #	Time Duration	Freq Range	Method	Sweep/Dwell Time	Notes
I	Input signal: 10ms pulse period	1	1:34	30M – 1G	Swept	Auto: 194ms	
	(repetition rate)	2	2:31	30M – 1G	Swept	Per MIL-STD461: 146sec	Freq Resolution: Need to Zoom in
	I 10us pulse duration @ 700MHz	3	0:08	30M – 1G	Time Domain	Per MIL-STD461: 15ms	

■ RBW = 100kHz

March 2018 - EMC Receiver Concepts

Time Domain Scan in an EMI Receiver

Time Domain Scan Demo

Frequency Swept - Capture Pulsed Event (1:34)

Fast Sweep with Max Hold

I Conditions

- I 10ms PRI with 10us pulse duration @ 700MHz
- I Sweep from 30MHz to 1GHz
- I RBW = 100kHz (6dB MIL-STD 461 filters)
- I Default Sweep Time = 194ms
 - I MIL-STD461 sweep time spec is 145.5sec
 - Ⅰ (1GHz 30MHz) * 0.15sec/MHz = 145.5sec

I Observations

- I Takes almost 4 minutes to capture
- I Almost have to know it's there, can be misleading

Receiver Spectru Ref Level 97.00 dBµV		(EMI) 100 kHz	O s 00		Marker
Att 10 dB SGL Count 11/1500	SWT 194 ms VBW		ode Auto Sweep	Input 1 AC	Marker 1
o 1Pk Max					
90 dBµV		M1[1]		17.26 dBµV 1.0250 MHz	Marker 2
80 dBµV				(Marker 3
70 dBµV					More Markers •
60 dBµV					Marker
50 dBµV					Norm Delta Marker
40 dBµV					to
30 dBµV					Marker Wizard
30. day you to be the training the last	telitide til refiliere attera tora dissidit i lati	district a distant line sattline	Alamak Levil in ind and adams	- deliter description	
	Ment y and an individual of the state of the state				All Marker Off
0 dBµV					More
Start 30.0 MHz	1940	0 pts	Sto	p 1.0 GHz	
		Mea	suring	A REAL PROPERTY AND A REAL	08.01.2016

Frequency Swept - Capture Pulsed Event (2:31) MIL-STD 461 Spec Sweep Time with Max Hold

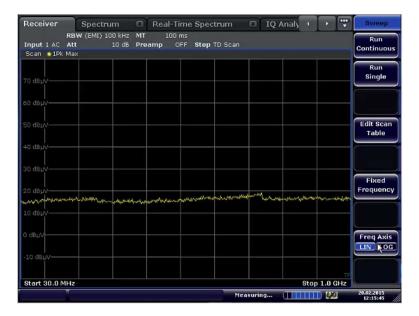
I Conditions

- I 10ms PRI with 10us pulse duration @ 700MHz
- I Sweep from 30MHz to 1GHz
- RBW = 100kHz (6dB MIL-STD 461 filters)
- I Spec'd Sweep Time = 146sec
 - I MIL-STD 461 sweep time spec is 145.5sec
 - I (1GHz − 30MHz) * 0.15sec/MHz = 145.5sec

I Observations

- I High probability to capture 10ms PRI pulsed signal
- I Takes 146sec, 2:26

		IQ Analyzer 🛛 🕲	· • 🐺	Detector
SGL PS	 RBW (EMI) 100 kHz SWT 146 s VBW 1 MHz 		Input 1 AC	Auto Select
• 1Pk Clrw				Auto Peak
80 dBµV				Positive Peak
60 dBµV				Negative Peak
50 dBµV			(Sample
40 dBµV				RMS
				Average
montang hapatin halantin han ang 10 da pu	when the second of the standard and the second and the second second second second second second second second	hidownation freedomethics	whitehead	Up 4
0 dBµV				More
Start 30.0 MHz	691 pts		Stop 1.0 GHz	
		Measuring		20.02.2015


Time Domain- Capture Pulsed Event (0:08) MIL-STD 461 Spec'd Dwell Time

I Conditions

- I 10ms PRI with 10us pulse duration @ 700MHz
- I Sweep from 30MHz to 1GHz
- I RBW = 100kHz (6dB MIL-STD 461 filters)
- I Spec'd Dwell Time = 0.015sec = 15ms

I Observations

- I Event detected and captured in just a few seconds
- I Time Domain is much faster and less likely to miss intermittent event

Agenda

- I What does Compliance Mean?
 - I CISPR 16-1-1
- I Spectrum Analyzers vs EMC Receivers
 - I Purpose / Application
 - Architecture
- I The Value of Pre-Selection
- I Time Domain Scan
 - I Ability to Capture Intermittent Signals
 - I Speed
 - I Measurement Time (Dwell Time) / PRI (Pulse Repetition Rate)

AGC: Automatic Gain (of Level) Control

- I User Interface
- I Real-time Spectrum Analysis

Auto-Ranging AGC

Automatic Gain Control

- I Protect the receiver from overload conditions for in-band signals
- I Applies attenuation to keep receiver operating in linear conditions
- I Can be implemented in RF stage or IF stage or both
- Examine conditions of signal in 600 MHz TV bands with an over-the-air interference signal

Auto-Ranging AGC 500 – 700 MHz – Spectrum Analyzer vs EMI Receiver (with and without AGC)

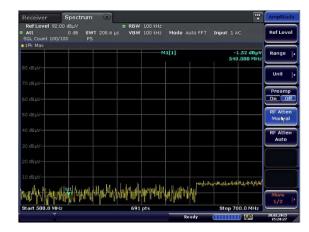
I Signal Conditions

- Using an antenna over-the-air, demonstrating front-end saturation and IF overload of a strong signal at 600 MHz
- I Other signals are TV bands and other broadcast signals

I Observations

- I IF overload occurs in sweep mode (spectrum)
- Receiver mode is selected and auto-ranging scan is turned onreducing the level of the signals measured in the IF
- I Notice the RED overload indicator

Auto-Ranging AGC


Attenuation vs. AGC impact to noise floor

I Signal Conditions

- Using an antenna over-the-air, demonstrating front-end saturation and IF overload of a strong signal at 600 MHz
- I Other signals are TV bands and other broadcast signals

Observations

- Attenuation is manually applied to 30 dB in Swept mode to reduce the IF Overload signal (it actually flickers at 25 dB, but the video did not capture this)
- I Notice the increase in noise floor
- Notice the signal at 620 MHz actual reduce at the last step of 30 dB (compression)
- I Receiver mode is selected and the first run with AGC off, then on to show the improvement in noise floor

ROHDE&SCHWARZ

Agenda

- I What does Compliance Mean?
 - I CISPR 16-1-1
- I Spectrum Analyzers vs EMC Receivers
 - I Purpose / Application
 - I Architecture
- I The Value of Pre-Selection
- I Time Domain Scan
 - I Ability to Capture Intermittent Signals
 - I Speed
 - I Measurement Time (Dwell Time) / PRI (Pulse Repetition Rate)
- AGC: Automatic Gain (of Level) Control

User Interface

I Real-time Spectrum Analysis

Spectrum Analyzers vs EMI Receivers: User Interface

Measure from 30MHz – 200MHz

Spectrum Analyzer: user calculates...

- Sweep Time
 - (200M-30M) x 0.15sec/MHz
 - = 25.5 secs*
 - * unless look at Appendix A to match frequency stepped, in that case double it to 51sec
 - Or...(25.5sec / auto sweep time) = #
 sweeps
- Frequency Resolution
 - # points = at least...
 - I ((200M-30M)/RBW) * 2 + 1
 - **=** 3401

		Minimum I	Owell Time	
Frequency Range	6 dB Resolution Bandwidth	Stepped- Tuned Receiver ^{1/} (Seconds)	FFT Receiver 2/ (Seconds/ Measurement Bandwidth)	Minimum Measurement Time Analog-Tuned Measurement Receiver ^{_1/}
30 Hz - 1 kHz	10 Hz	0.15	1	0.015 sec/Hz
1 kHz - 10 kHz	100 Hz	0.015	1	0.15 sec/kHz
10 kHz - 150 kHz	1 kHz	0.015	1	0.015 sec/kHz
150 kHz - 10 MHz	10 kHz	0.015	1	1.5 sec/MHz
10 MHz - 30 MHz	10 kHz	0.015	0.15	1.5 sec/MHz
30 MHz - 1 GHz	100 kHz	0.015	0.15	0.15 sec/MHz
Above 1 GHz	1 MHz	0.015	0.015	15 sec/GHz

<u>1/</u> Alternative scanning technique. Multiple faster sweeps with the use of a maximum hold function may be used if the total scanning time is equal to or greater than the Minimum Measurement Time defined above.

<u>2/</u>FFT Receivers. FFT measurement techniques may be used provided that FFT operation is in accordance with ANSI C63.2. The user interface of the measurement receiver must allow for the direct input of the parameters in <u>Table II</u> for both FFT Time Domain and Frequency Stepped modes of measurement in the same manner, without the necessity or opportunity to control FFT functions directly.

ROHDE&SCHWARZ

March 2018 - EMC Receiver Concepts

TABLE II. Bandwidth and measurement time.

Spec Ans vs EMI Receivers: User Interface

Measure from 30MHz – 200MHz

EMI Receiver: user calculates...

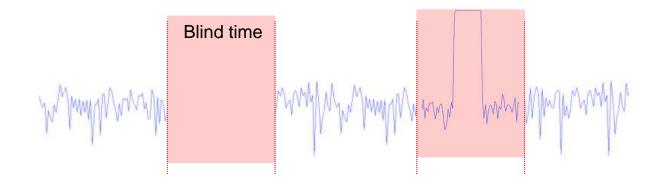
NOTHING, just enter in table...

		Minimum I	Owell Time	
Frequency Range	6 dB Resolution Bandwidth	Stepped- Tuned Receiver ^{1/} (Seconds)	FFT Receiver 2/ (Seconds/ Measurement Bandwidth)	Minimum Measurement Time Analog-Tuned Measurement Receiver ^{_1/}
30 Hz - 1 kHz	10 Hz	0.15	1	0.015 sec/Hz
1 kHz - 10 kHz	100 Hz	0.015	1	0.15 sec/kHz
10 kHz - 150 kHz	1 kHz	0.015	1	0.015 sec/kHz
150 kHz - 10 MHz	10 kHz	0.015	1	1.5 sec/MHz
10 MHz - 30 MHz	10 kHz	0.015	0.15	1.5 sec/MHz
30 MHz - 1 GHz	100 kHz	0.015	0.15	0.15 sec/MHz
Above 1 GHz	1 MHz	0.015	0.015	15 sec/GHz

TABLE II. Bandwidth and measurement time.

<u>1/</u> Alternative scanning technique. Multiple faster sweeps with the use of a maximum hold function may be used if the total scanning time is equal to or greater than the Minimum Measurement Time defined above.

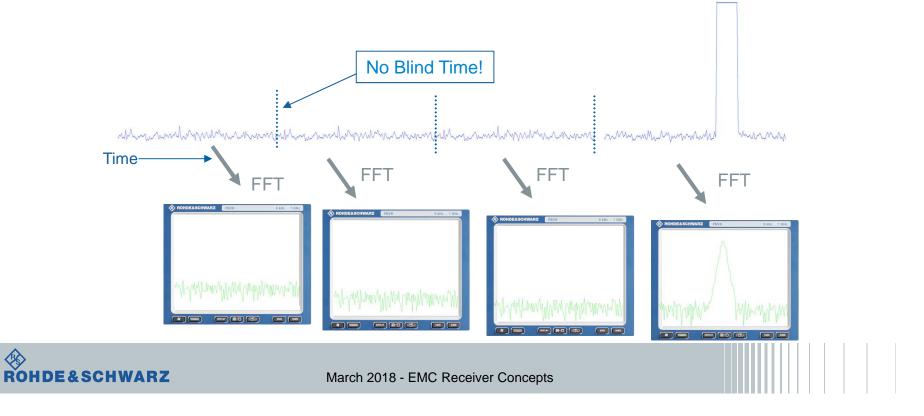
<u>2/</u>FFT Receivers. FFT measurement techniques may be used provided that FFT operation is in accordance with ANSI C63.2. The user interface of the measurement receiver must allow for the direct input of the parameters in <u>Table II</u> for both FFT Time Domain and Frequency Stepped modes of measurement in the same manner, without the necessity or opportunity to control FFT functions directly.

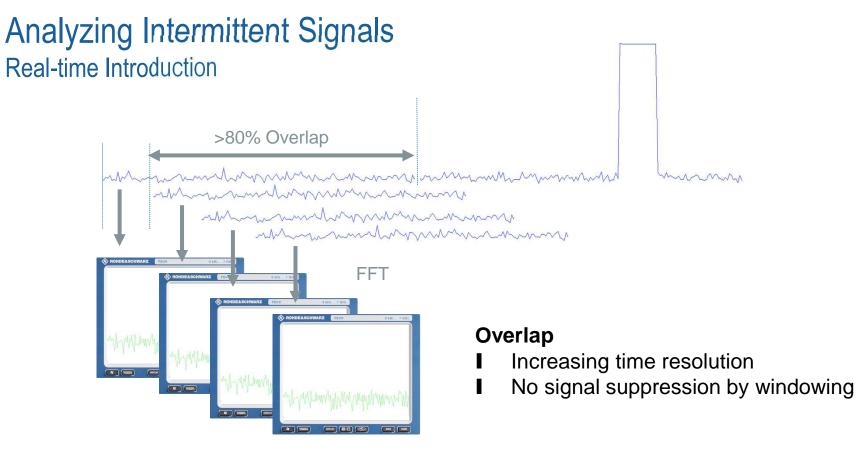

Agenda

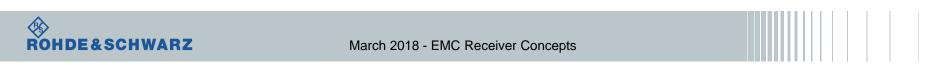
- I What does Compliance Mean?
 - I CISPR 16-1-1
- I Spectrum Analyzers vs EMC Receivers
 - I Purpose / Application
 - Architecture
- I The Value of Pre-Selection
- I Time Domain Scan
 - I Ability to Capture Intermittent Signals
 - I Speed
 - I Measurement Time (Dwell Time) / PRI (Pulse Repetition Rate)
- AGC: Automatic Gain (of Level) Control
- I User Interface
- I Real-time Spectrum Analysis

Analyzing Intermittent Signals Real-time Introduction

I With traditional instruments there are blind times between signal acquisition

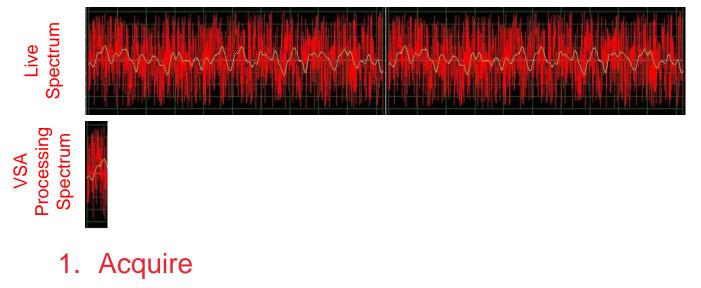



Information might be and will be overlooked

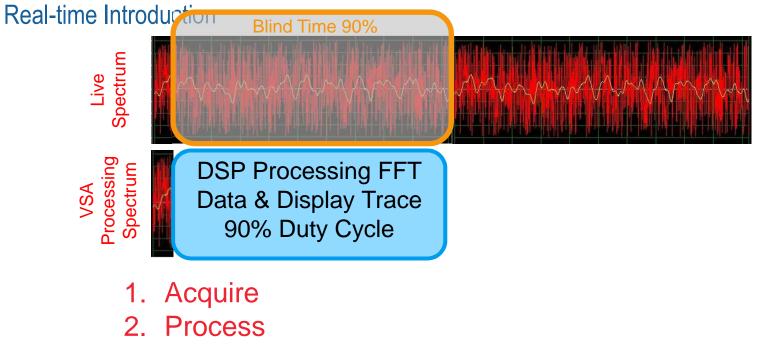


Analyzing Intermittent Signals Real-time Introduction

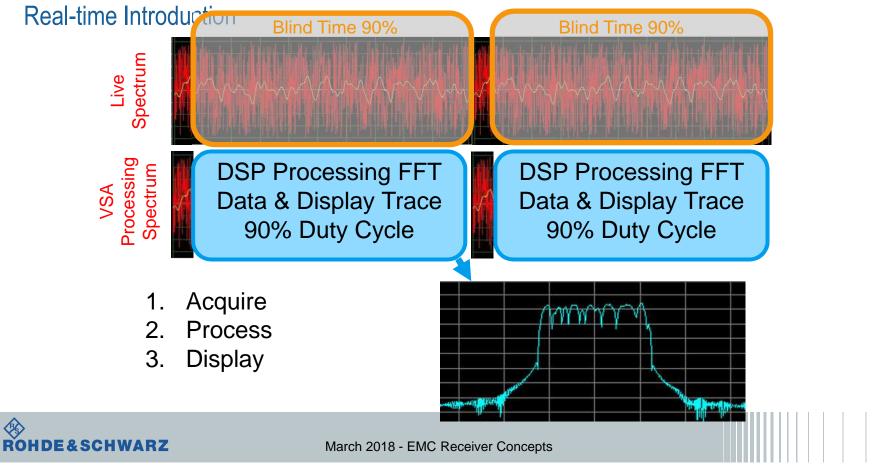

A Real-time spectrum analyzer shows the spectrum without any loss of data



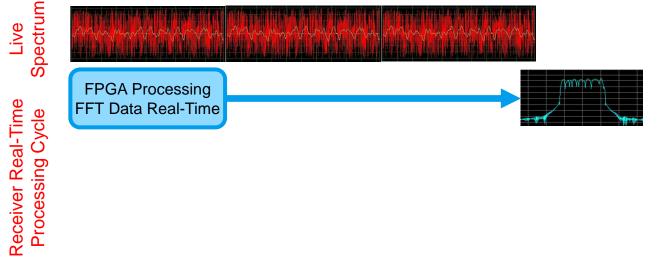
Real-time Introduction



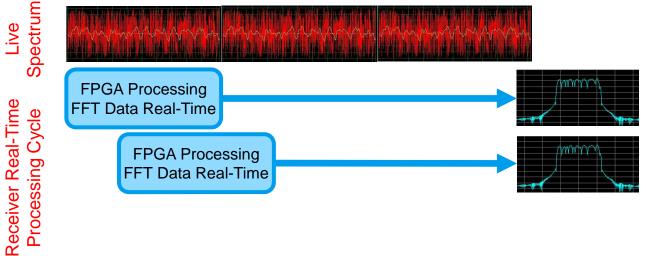
Real-time Introduction



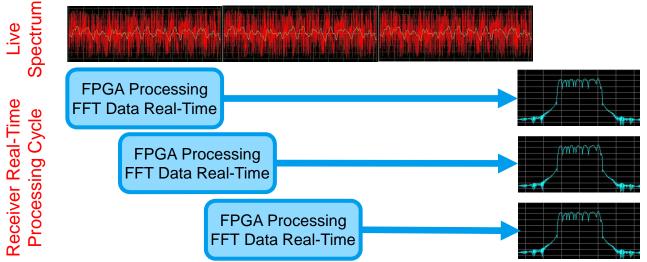
ROHDE&SCHWARZ



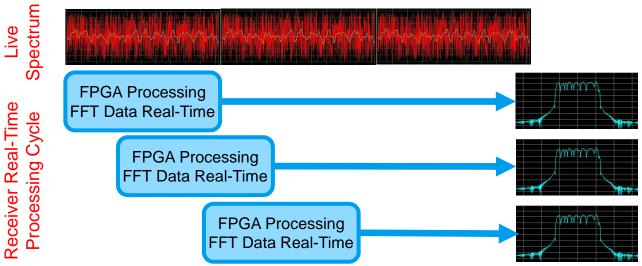
Real-time Introduction



Real-time Introduction



Real-time Introduction



Real-time Introduction

Real-time Introduction

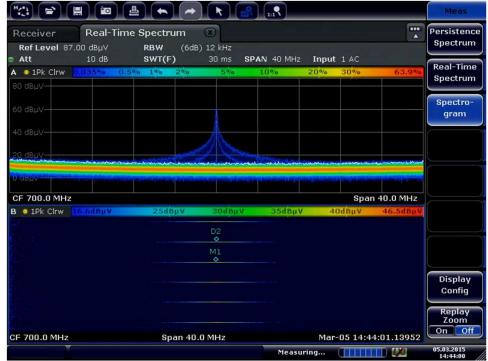
- Processing in FPGA allows data to be processed as fast as it can stream in
- I 100% Acquisition Cycle NO Blind Time
- Overlapping catches any events lost or attenuated by Windowing
- 1000's of spectrums processed

ROHDE&SCHWARZ

- The Spectrogram Display provides information on the time nature of the signal
- Information on the time varying nature of the signal provides a wealth of information in understanding what the signal is and what is generating the signal

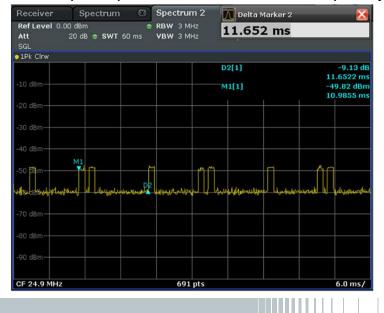


Spectrogram


3 dimensional display

- I X axis: frequency
- I Y axis: time
- Color: signal level
- **I** EUT is a laptop power supply
- Different load conditions change the spectrum over time

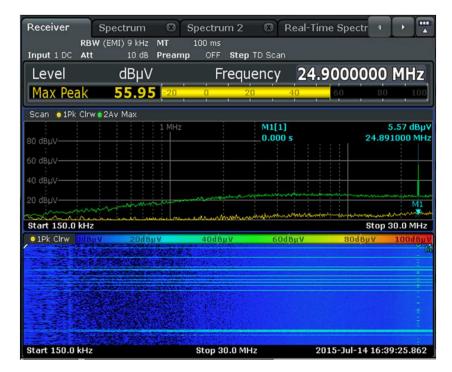
Ability to measure PRI


Zero span display in spectrum analyzer measures signal period / pulse repetition rate

dBµV TRG 67.000 dBµV 0		D2						2[1] 1[1]			84	0.00 d3 .0006 ms .59 dBu¥
											0.0	000000 s
		RG 67.00										
ra an and manifest affects affects affect and the mean of contracted and affects												
an eo eo a dao an coltana ante e tal colare e recedile. En ference e e stres e ferroame cannel a merer e la cal A	ernen forst	inger innerererererererererererererererererere	in the state of th	leps/logistypite	4444 00	l no du	e politica qui policie di p	ويقافأ أنجرا ويا	y broubur	ntyawa pinili	a Poor lateral of	There is a start of the

1DE&SCHWARZ

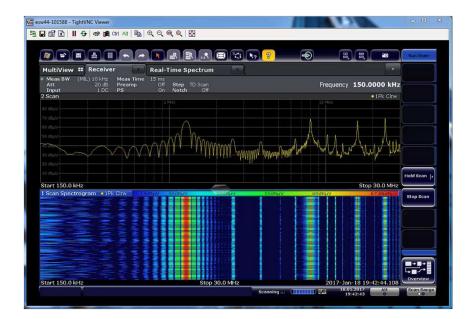
RO


Zero span works when there is a single frequency emission, but what about cases with multiple frequency emissions? Or multiple repetition rates on same frequency?

- What about cases with multiple frequency emissions?
- I Or multiple repetition rates on same frequency?

Receiver	Spectrum	Spectru		ta Marker 2	×
Ref Level 0.1 Att	00 dBm 20 dB 😑 SWT 6	■ RBW 31 50 ms VBW 31		52 ms	
SGL					
• 1Pk Clrw -10 dBm			D2[1]		-9.13 d 11.6522 m -49.82 dBr 10.9855 m
-20 dBm					
-40 dBm					
-50 มีชิก ประวอกประเทศ	M1	PP With March	m Christen	stiper dubitionies	nd R farment
-70 dBm					
-90 dBm					
CF 24.9 MHz		69	1 pts		6.0 ms/

- Spectrogram reveals simultaneous narrowband and broadband emissions
- BUT NO Periodicity NOT Real-time

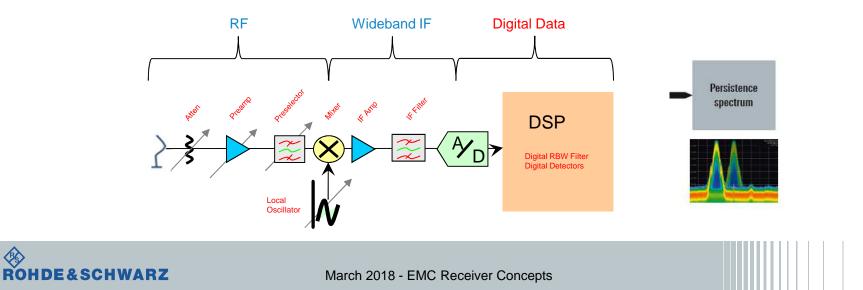

ROHDE&SCHWARZ

Real-time Spectrogram is useful to identify and characterize multiple simultanous emissions in cases where emissions are on the same frequency, and different frequencies

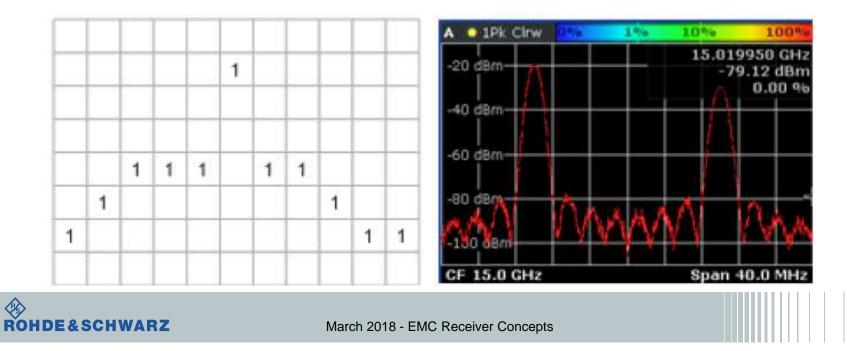
Level	dBµV	Frequency	24.900000	0 MHz
Max Peak	55.95 🗠	0 20	40 60	80 100
Scan 01Pk Cirw	2Av Max			
30 dBµV	1 MHz	M1[1 0.00		5.57 dBµ 4.891000 MH
	manne	- Late an torset we and we	warden and and	MI
Start 150.0 kHz	A LE SALAN SAMALIMA			op 30.0 MHz
• 1Pk Cirw	20d8µ9	40d8µV 60	<u>адри 8046µv</u>	10048µ

Receiver	Re	al-Tim	e Spectrui	m 🛞 Sp	ectrum 🛛	0		
Ref Level				(6dB) 2 kHz			5	
Att	10 (ав	SWI(F)) 492.5 μs	SPAN 5 MHz	Input 1 DC		down by and
A								Pk Clrw
80 dBuV					M1[1] —-12.31 ms			07 dBµV 000 MHz
					D2[1]		24.900	5.67 dB
60 dBµV				D3	-9.85 ms			0 Hz
40 dBµV								
				8 <mark>0</mark> .2				
20 dBµV								
Waynes Jarlar phate	the for the way	W. J. M.	hand mengering and	approximite many	anna mar mandra lat balant	philipping and president	ule of statility of the	and the set of the set
CF 24.9 MHz							Span 5	
at at a second to a		V	20dBµV	30dBµV	40dBp1	V 5	OdBuV	58dBµV
at at a second to a		IV.	20dBµV	30dВµV M1	40dBp1	V 5	OdBµV	58dBµV
st control to		IV.	20dBµV	M1	40dBp	V 51	OdBµV	58dBµV
05000 50		IV.	20dBµV	M1 D2	40dBµ	V 51	Od Bµ V	58dBµV
B • 1Pk Cirw		V.	20dBµV	M1	40dBµ1	V 51	OdBµV	58dBµV
state of the state of the		V.	28dBµV	M1 D2	40dBµ1	v 51	Ūd₿µV	58dBy V
at at a second to a		Υ.	28dBµV	M1 D2	40dBµ1	V 51	OdBµV	58dBµV
at at a second to a		V.	20dBµV	M1 D2	40dBµ1	V 51	OdBµV	58dBµV
B • 1Pk Clrw	9.1dBp	.¥.		M1 D2 D3 +++++	40dBµ1			
B • 1Pk Clrw	9.1dBp	V		M1 D2	40dBµ1		0dBpV 17:55:00	
B • 1Pk Clrw	9.1dBp		Spa	M1 D2 D3 + + an 5.0 MHz		Jul-14 :	17:55:00).27297
B • 1Pk Clrw CF 24.9 MHz Marker Dgr No Ty	pe Ref	Trc Fr	Spa ame/Lev.	m1 D2 D3 + + an 5.0 MHz X-value	Y-value		17:55:00).27297
B • 1Pk Clrw CF 24.9 MHz Marker Dgr No Ty A 1 M	9.1dBp	Trc Fr 1 -	Spa	M1 D2 D3 + + an 5.0 MHz		Jul-14 :	17:55:00	

ROHDE&SCHWARZ

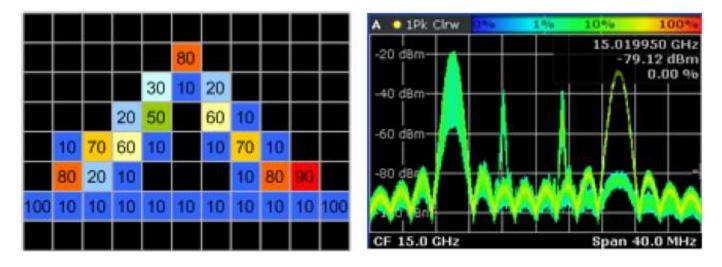

Summary Video

Persistence Display

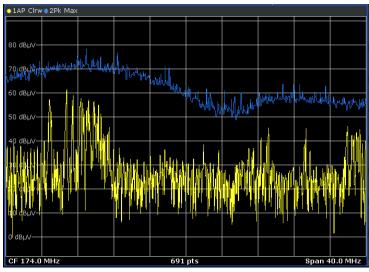

Benefits for EMI Diagnostics

- I Valuable aid for examining signals that change over time
- I Impulsive interferers are clearly contrasted with continuous interferers
- I Different impulsive interferers can be easily distinguished
- I Shows signals that are not detectable with conventional analyzers

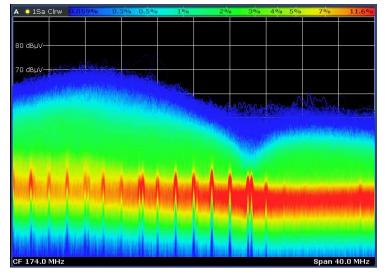
Analyzing Intermittent Signals Persistence Display

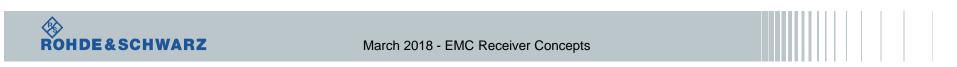

Seamless superimposition of all spectra in one diagram

Virtual table and diagram containing the results after one FFT


Analyzing Intermittent Signals Persistence Display

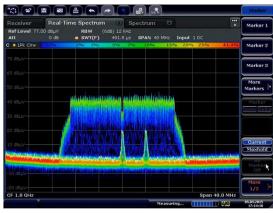
- I The trace color shows how often a signal occurs at a specific frequency and level
- $I \Rightarrow Spectral histogram$
- I Virtual table and result display


Analyzing Intermittent Signals Persistence Display of Windshield Wiper Motor


Conventional Spectrum Analysis

Yellow Trace: Clear write display Blue Trace: Max hold display

2nd pulsed disturbance signal hidden by the broadband noise, not detectable by conventional spectrum analysis

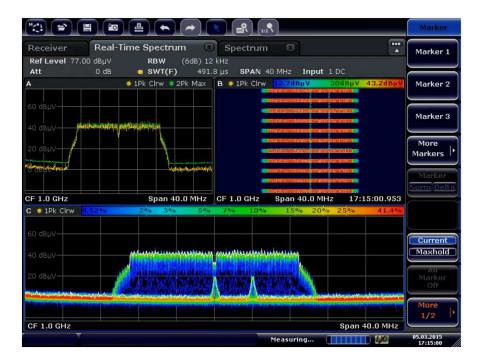


Analyzing Intermittent Signals Persistence Display

Conventional Spectrum Analysis

	eal-Time Spe					Persistence Spectrum
RefLevel 77.00 dB Att 0	µV RB dB 🖕 SW		kHz Sms SPAN 40	MHz Input	1.00	spectrum
	ub Jan	1(1-)	SIIS OPAN HO		Pk Clrw = 2Pk 1	Aax Real-Time Spectrum
						Spectro- gram
	photon	un alan an a	energeten et state	wath the		
	J.		1			
	1			1		
0. dBuV	~			- t.	and and the second	
the territorial block provide	niel			ling	ansan Alder graders	
						Display Config
						Replay
						On Off
= 1.0 GHz					Span 40.0 N	IHZ CON CON

Persistence Display



Spectrogram Display

	8			🔓 📶 Sweep		2	Sweep
Receiver Ref Level 77.0	0 dBµV		dB) 12 kHz	ec 491.76			Continuou Sweep Stop
Att	0 dB	SWT(F)		SPAN 40 MHz	Input 1 DC		Single
B 💿 1Pk Clrw	2.7dBµV	20dBµV	25dBµV	30dBµV	35dBpV	43.2dBµV	Sweep
							Select
							Figure
	-						
			200001279 <mark>0</mark> 0.07139				Sweeptin
		Presidenti antocontra Presidenty inductory en	NAMES OF COMPANY				Manual (I
		TRACT NUMBER OF TRACT					Sweeptin Auto
	-						_
		CONTRACTOR NET DESCRIPTION					
							Sweep
		Colonies Alternation with					Count
		enterna de la construir Colore de la construir					More 1/2
CF 1.0 GHz		Span 40	.0 MHz		Mar-05 17:1	2:14.26379	

Analyzing Intermittent Signals Simultaneous Displays: Powerful Analysis

Summary

I What does Compliance Mean?

I CISPR 16-1-1

Spectrum Analyzers vs EMC Receivers

- I Purpose / Application
- I Architecture

I The Value of Pre-Selection

I Time Domain Scan

- I Ability to Capture Intermittent Signals
- I Speed
- I Measurement Time (Dwell Time) / PRI (Pulse Repetition Rate)

AGC: Automatic Gain (of Level) Control

- User Interface
- I Real-time Spectrum Analysis

